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Abstract-An analytical method for the caluclation of the stiffness and carry-over coefficients for masonry
beam-columns is presented. The masonry element is made of a material which can resist little or no tension, It
is shown that the stability functions for the conventional frame element represent an upper or lower bound
for the functions discussed here; further, that unlike in the conventional case, specific knowledge of the
eccentricity ratio is required for a unique solution.

NOTATION

b width of column
c carry-over factor of a beam subject to an axial force
C constant of integration
d depth of column
e eccentricity at top of pier
h length of basic column
L II
m 6eld
p deflection parameter
P axial load

PR 'll'
2 EI/V

r (3-a)/0+2p-a)
r".. 4/r(l-p)+a'

s non-dimensional stiffness of a beam subject to an axial force
x, u coordinates

z' (3-m)/(I+2p-m)
z,' (3 - m,)/(I + 2p - m,)
z. 41z2(1- p)
a 1+ IfT.lfT••1
A V(P/EI)

fT, fT" fT.. compressive stress, tensile resistance, P/bd,

I. INTRODUCTION
Analytical solutions of rigid frames fall, broadly, in two basic groupings; those resting on the
flexibility (displacement) method, and those which are derived by applying the stiffness, or force,
method. The latter, of which the moment-distribution method is an example, requires stiffness
coefficients at both ends of the member, or one stiffness coefficient at the rotating end and a
carry-over coefficient at the fixed end. For a homogeneous, prismatic member in the absence of
an axial load these values are 4EIII and 0.5, respectively, but they change in the presence of an
axial load [1], Fig. 1. The concept of a homogeneous member will be discarded in this discussion;
instead, the emphasis will be placed on a member of rectangular cross section made of a material
which can resist little or no tension.

If the beam-column is a brick pier of low quality mortar it will have practically zero tensile
resistance; in such a column cracking will occur at the slightest tendency for tension. The
effective depth of the section decreases after cracking occurs and because of this the
beam-column may be looked at as a bar with varying moment of inertia. This variation is,
however, unknown because it depends on the deflected shape; furthermore, it is not
symmetrically placed about the material axis (Fig. 2). If CT, = 0, stress distributions are trapezoidal
in the uncracked part and triangular in the cracked zone. For a material with a small amount of
tensile strength such tension will build up on the convex face and a skew trapezoidal stress
distribution will balance the external forces in the uncracked portion. When this tensile limit is
exceeded triangular distributions will appear over part of the depth of the column in the cracked
zone (Fig. 2).

Columns made of no-tension material have been considered by Angervo [2], Chapman and
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Fig. 2.

Fig. 1. Basic column.
Fig. 2. Dellected shape of pier.

u

Slatford{3], Yokel{4], Risager[5] and Frisch-Fay [6]. Portal frames have been the subject of
investigation by Sahlin and Hellers [7].

2. FORMULATION OF THE PROBLEM AND THE BASIC CASES

The basic column to be analised is of a rectangular cross section (Fig. 2), having a width b. A
load P is placed eccentrically along the minor axis at the free end. It is made of a material that
can resist tension u, ;;!: O.

The differential equation governing the uncracked part of the column in Fig. 2 is

while the cracked zone is controlled by

d2u 2P
dx 2+9Eb(O.5d _ U)2 O. [6]

Depending on the eccentricity of P we distinguish between columns with no cracked zone,
columns with cracked zones only, and columns which contain both.

Case A. If the line of thrust is wholly within the permissible kerns, all sections are uncracked.
This will be the case if e'" ad/6, and, in addition, 8 ... ad/6.

Direct integration of

(1)

leads to

(2)

after adjusting the integration constant to satisfy

dd
U!x-o =0,x u-3
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and to

dul d ,/ 2 2- = - v [(1 +2p) - m ]
dx .~e 6A

where /j = d/6 +pd/3 and m = 6e/d. Further integration of eqn (2) results in

h 05 . -I mA= . 'IT - SIO 1+2p
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(3)

(3a)

because the integration satisfies u(O) = /j, and e/ /j = m/(1 +p). Case A is available for 0~ m ~ a
and (m -1)/2 ~ P~ (a - 1)/2.

Case B. Here the line of thrust lies partially within the permissible kern which in turn depends
on a. The lower zone is cracked (Fig. 2). The differential equation applying to the lower portion is

and direct integration gives the slope in the cracked (lower) region as

du d I( /j - u )
dx = AV (1- p)(O.5d - u)

where the integration constant satisfies

d
dulx=o =0.
x .~~

For the uncracked upper part eqn (1) obtains. Integration results in

(4)

(5)

(6)

The slopes of eqns (5) and (6) are identical where cracked and uncracked portions join. For a
no-tension pier this will occur at u = d/6 (a = I); if, however, the convex face can resist u, the
eqns (5) and (6) are identical at u = ad/6. It can be shown that the shape in the uncracked (upper)
part is

and the end slope is

dul d I( 1+2p-a a
2
-m

2
)

dx .~e=3A V (1-p)(3-a)+-4-'

Direct quadrature of eqn (5) leads to the length of the cracked section

f
~ 2

xc =2A(1-p)3/2 (2~1)2ds
r(ad/6) r

(7)

(8)

(9)

where a new variable r(u) = V[(0.5d - u)/(u - u)] has been introduced. The length of the cracked
zone is now

_ 3/2 (I r +1 2r)xc -O.5A(1-p) nr-l+r2-1

where r = r(ad/6) = V[(3 - a)/(1 +2p - a)].

(10)
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In order to obtain the length of the uncracked portion integrate eqn (7) from u = ad/6 to u = e.
Remembering that for a positive slope du/dx, u is negative,

(11)

Adding eqns (10) and (II)

h 3/2 [ r + 1 2r] . _I a/2 . _I m/2
A=0.5(1-p) Inr-l+r2-1 +sm I( 1 +a2)-sm J( 1 +a2

)' (12)
'J (1- p)r2 4 'J (1- p)r2 4

The results are valid for m < a, and (a - 1)/2"';; P < 1.
Case C. The line of thrust now lies wholly outside the permissible kern; all sections are

cracked.
Using eqns (4) and (5) we find that the end slope

dul d I( l+2p-m )
dx u~e =3A 'J (I-p)(3-m) .

The length of the cracked portion now equals the length of the pier h. From eqn (9)

h =0.5A(I_p)3/2 [In r~ 11 + 2~I]u-8.r~oo
r r u=e.r=r(rn)

where r(m) = V[(3 - m)/O + 2p - m)] = z or

Equation (5) is valid for a"';; m < 3, O.5(m -1) < P ",;; 1.

(13)

(14)

(15)

3. BASIC EQUATIONS

The original beam column, fixed at B and rotated through (J at A, subject to an axial load P
and having no translation between A and B, is shown in Fig. 1. On replacing M by Pe we can
substitute the forces and moments in Fig. 1 by those shown in Fig. 3; for a fixed el the other
eccentricity e2 must be selected such that

(6)

where II is the aggregate of the lengths that make up AB and'" is the slope at B. The stiffness
factor

and the carry-over factor

follow immediately.

Pel
s=-

EI(J
II

(17)
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Fig 3. Compositions of basic cases.
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We distinguish two positions for the same m. = 6e./d; the low position, making a pier A' B'
with eccentricities m~ and m;; and the high position giving a strut A"B" and eccentricities m~, and
m~ (Fig. 3).

Let the slopes at B' and B" be "" and "''', respectively. Then,

(J' = "" _ dul
dx .-mi

and

(J" = "'" +dul .
dx .-mi

(19)

Since both branches have the same slope at C it follows that the deflection parameter p is also
identical for both branches, that is, for DFC, and COE.

For a fixed m. and p the aggregate length It = L can be calculated. Then,

(20)

where A = LIA, and PI> =EI1r2/e.
Equation (16) is the basic equation to be solved; the unknown is m2. There is, however, a

variety of combinations, depending on whether m. is inside or outside the effective kern, whether
it attracts m2 inside or outside the permissible kern, whether for m. < a the line of thrust is
wholly within the kern, wholly outside, or a combination of these and, finally, depending on
whether m. is in high or low position (Fig. 3). These possibilities, leading to 10 different cases,
will be considered in the Appendix.
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4. NUMERICAL RESULTS

A computer program will scan m, from 0.1 to 2.6 searching for an appropriate mz, for six
values of p placed within the range applicable. The computation begins with AI (eqn (21) in the
Appendix); A z and A3 follow. Here it branches to A4 or A6 • Next it takes one of three possible
routes: A7 - A9 , or A7 - A 10, or As - A IO •

The stiffness and carry-over values for a certain ratio of PIPE depend, unlike for conventional
columns, on the eccentricity of the load at the rotated end. For comparison, sand c are shown in
Fig. 4[1]. The dual values of sand c corresponding to any particular value of PIPE are a feature
not found in the conventional stability functions and call for a brief comment. The stiffness
values begin on the upper, descending branch (full line) and terminate at the vertical tangent; the
c values, on the other hand, are on the lower,ascending branch (full line). Also shown on Fig. 4 is
the relationship of sand c for the conventional and cracked column.

For a = 1,1.5,2, a family of sand c curves is presented (Figs. 5-13). The last two values of a
refer to slight, and moderate tensile strength, respectively, while a = I means a no-tension
material. Figures 6,9 and 12 show carry-over factors vs PIPE; for low values of m(0.1-1.0) Figs. 7,
10 and 13 have been provided.
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Fig. 4. Comparison between conventional and masonry column.

P/fl:

Fig. 5 Stiffness coefficients for a = I.
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Fig. 6. Carry-over factors for a = I.
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Fig. 7. Carry-over factors for a = I.
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Fig. 8. Stiffness coefficients for a = 1.5.

30 r-------,-----,-------,-----,

,,=1'5

25

20

15

PIfi:
00.'---------=-0'::-5----.,.'10::------:L

1
5:----=----,.J20

Fig. 9. Carry-over factors for a = 1.5.



5

'·0

Stability functions for structural masonry

PIp"
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Fig. 10. Carry-over factors for a = 1.5.

0. = 2

Fig. II. Stiffness coefficients for a = 2.
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Fig. 12. Carry-over factors for a = 2.

P/fi'

Fig. 13. Carry-over factors for a = 2.
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5. EXAMPLE

Consider a steel girder 6 m long fixed at one end, supported by a brick pier at the other, and
carrying 40 kN/m distributed load. Let E = 200,000 MPa and 1 = 375 x l<f' mm4 for the girder; the
brick pier is 12 m high, and its dimensions are d = 0.2 m, b = 0.34 m. Let E = 20,000 MPa for the
pier.

If the girder acts as simply supported on the pier the reaction is 90 kN and the rotation cp' = (/48)
weIE1 = 0.00245. Assume that P = 90 kN acts at e = 0.060 m on the pier, thus m = 1.8. With
PIPE = 0.286, s,,~, = 2.9 and the rotation of the top of the pier cp" = 0.00247. The assumed
eccentricity is, therefore, almost correct. From c" ~ 1 = 0.6, the eccentricity at the base is 0.036 m. For
a conventional column s = 3.6 and c = 0.58; a rigid connection results in e = 0.03 m.

6. CONCLUSION

By applying a non-linear differential equation, in addition to a linear one, stiffness and
carry-over factors can be obtained for a column made of no-tension material (a = 1) or of a
material resisting little tension (a = 1.5 - 2). The basic operational tools applicable to
conventional structures can thus be extended to masonry structures.
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APPENDIX
Case J. (m, < a, m2 < a, 0.5(m -I) < p < 0.5(a -I), m, in low position. In Case 1the line of thrust lies wholly within the

permissible kern and 0', is nowhere exceeded on the convex face. Appropriate lengths are obtained from eqn (3a) and Fig. 3

CRA =0.51T, CAIA =sin-' 1:~p' CB'/A =sin-' 1:;p'
With eqn (3) for the slope at B' and eqn (19) for IJ we have

mt +m~ . _I mt • -I m;
V[(I+2p)2-m~)21 SIR 1+2p + SIR 1+2p

for the solution of m~. Let the RHS of eqn (20) be A, when m~ satisfies that equation; then

(20)

(21)

Case 2. (m, < a, m2 < a, O.5(m -I) < p < O.5(a -I), m, in high position. Again, the line of thrust lies wholly within the
permissible kern and 0', is nowhere exceeded on the convex face. From Fig. 3

m mil
A"B"/A = 1T-sin-'-'-+sin-,-2-

I +2p 1+2p'

and m~ is found by solving

(22)

Following the same approach as in Case I, there is

(23)

Results of Case 1 and 2 are identical with the stability values of conventional, tension resisiting columns (beam-columns)
because tension in these two cases will everywhere be below 0'" hence all sections are uncracked.
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Case 3. (m, < a, m2 < a,O.5(a -I) .. p .. I), m, in low position. Since the line of thrust lies everywhere inside the effective
kern this case is identical (with the exception of the range for p) with Case I.

Case 4. (m, < a, m2< a,O.5(a -I) <p < I), m, in high position. The column now is A"CB"and tension in excess of u, may
develop in the region about F leading to cracked sections in that area.

(A"CB")! -(I )312[1 r+1 2r] 2' -, a . -, m, . -, m~ -A
A- - p nr=t + ,,_ I + sm v'(rpo) - sm v'(rpo )+ sm v'(rpo ) - •

where

4 2

rpo = "(1 _ p) + a

and

" =:-=3~-..::a=-­
1+2p -a'

m; is found from

followed by

(24)

(25)

(26)

Case 5. (m, < a, m2 > a, O.5(a -I) < p < I), m, in low position. This case is not possible because m, > m; (Fig. 3).
Case 6. (m, < a, m2 > a, O.5(a -I) < p < I, 0.5(m2 -I) < p < I), m, in high position. From Fig. 3, and with eqns (12) and

(15),

A"B"! 3 (I )312 [I r + I 2r] 3' -, a . -I m, 05(1 )312 [I Z+ 1 2Z] - A (27)A=2 -p nr=t+"_1 + sm v'(rpo)-sm v'(rpo)-' -p nz=l+z2_1 - 6

where

m~ may be solved from

(28)

and then, from eqns (8) and (13)

(29)

where

4
Zp = z2(1 - p)'

Case 7. (m, > a, m2 < a, O.5(m, -I) < p < I), m, in low position. From Fig. 3, and with eqns (12) and (15)

A'B'!A =0.5(1_p)312 [ln~+.J!:....]+sin-,_a- -05(1_p)312 [In z, + 1++] +sin-I~=A, (30)
r-I "-1 v'(rpo) z,-I z, -I V(rpa )

where

2 3-m,
z, = 1+2p-m,'

Solution of

(31)

yields m;, while

(32)
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Case 8. (m, > a, m, > a, O.5(m,-I) < p < 1, m, > m,), m, in low position. Here, as seen from Fig. 3,

A' B'!A = (1- p)'" [In~+~] +2sin-,_a_- 0.5(1- p)'" [In z, + 1++]
r-I r-I V(r••) z, 1 z,-I

-0.5(1- p )312 [In z, + 1+ ~z, ] = A.
z,-I z,-I

because A' B' = CF + CG - A' F - B' G; also,

z'- 3- m,
, -1+2p-m,

m; is obtained by solving

m,+m;_ A
V(z.) - •

Further,

393

(34)

PIPE = A.'!1T', S. (35)

Case 9. (m, > a, m, < a, 0.5(m, -1) < p < I, O.5(m, -I) < p < 1), m, in high position. This is the high position
corresponding to Case 7.

A"B"!A 05(1 )3/2 [I r+ 1 2r] . -I a . -, mi 05(1 )'12 [I Z, + 1 2Z'] A (36)=. -p nr:1+ r-I +SID V(r•• )+SID V(r•• ) +. -p nz,_I+ z.'-I :; 9·

Upon solving

mi can be obtained, and then

P!PE :; A/hr',

m,+mi -A
Y(r.. -(mil') - 9

(37)

(38)

Case 10. (m, > a, m, > a, 0 5(m. -I) < p< 1), m. in high position. This is the high position of either Case 7 or Case 8.

A"B"!A =(l-p)312 [In~+~]+2sin-,_a_+ 0.5(1- p)'12 [In z, + 1+ ~z, ]
r - 1 r- I V(r••) z, - I z, - I

-0.5(1- p)3/2 [In z, + 11 + ~z'I]:; A..
z,- z,-

mi may be had from solving

m,+mi_
Av(z.) - 10

and the stiffness and carry-over factors

(39)

(40)

S.. = I( 4 )'
v(z,,) +V z,'(1- p)

(41)

follow


